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The method of direct separation of motions is used to justify an extended formulation of the integral stability criterion which 
enables both "simple" and "non-simple" cases of problems of the synchronization of objects with almost uniform rotations to 
be considered. It is shown, by means of examples, that the results found previously by Poincar6's small parameter method and 
by direct separation of motions, which require laborious computations, can be obtained much more simply by using an extended 
formulation of the integral stability criterion. © 2005 Elsevier Ltd. All rights reserved. 

The investigation of synchronization can be simplified considerably, and the results given a more 
convenient form, if the so-called integral stability criterion for synchronous motions holds [1-3]. In 
multiple synchronization problems, however, and in many problems involving simple synchronization 
of identical unbalanced vibrodrivers and a fairly wide class of cases of practical importance (those called 
"non-simple"), the integral criterion, in the form obtained by the Poincar6-Lyapunov small parameter 
method, does not allow the values of the phase rotations of the vibrodriver rotors in stable synchronized 
motions to be determined [2-6]. 

On the basis of the Poincar6 and Lyapunov methods, the following remarkable property has been 
observed in the synchronous motions of objects with almost uniform rotations and several other 
dynamical objects [1-3]: stable synchronous motions correspond to points of a strict coarse minimum 
of a certain function D (the "potential function") of the so-called generating parameters - the initial 
rotation phases ~1 . . . . .  ~k (in the self-synchronization problem - the phase differences as - ~k, where 
k is the number of rotations; see below). In cases of importance for applications, the potential function 
D is minus the mean Lagrangian Of the system over the period of rotations; in other, slightly more special 
cases - it is the mean Lagrangian of the oscillatory part of the system, that is, the system with "stopped" 
rotations. 

It has been proved by the use of the integral criterion, under fairly general assumptions, that a wide 
class of objects display a tendency to synchronization, and various important applied problems have 
been solved [2]. The extremum property of synchronous ("resonant") motions has also been established 
for motions of celestial bodies (see, e.g. [2, 7-9]). 

At the same time, there are cases in which the integral criterion in the form described does not enable 
one to find phase values in stable synchronous motions. This is the case, in particular, in problems of 
multiple synchronization for vibrodrivers in quasi-linear systems and in various synchronization problems 
for several (more than three) identical vibrodrivers [2, 4-6]. In these cases, known as "non-simple", 
the function D does not depend on some of the phases, and its minimum is therefore not strict. 

It will be shown below that the integral criterion remains valid if the function D is calculated not on 
the basis of the generating solution but more precisely - to the extent that this is necessary to establish 
its strict minimum. 

?PriM. Mat. Mekh. Vol. 68, No. 6, pp. 938-947, 2004. 
002t-8928/$--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.11.005 
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1. T H E  P R O B L E M  OF T H E  S Y N C H R O N I Z A T I O N  OF O B J E C T S  
W I T H  A L M O S T  U N I F O R M  R O T A T I O N S  

This problem may be formulated as follows [2, 3]. Consider a system with generalized coordinates % 
(s = 1, . . . ,  k) ("rotational coordinates") and Ur (r = 1 . . . .  , v) ("oscillatory coordinates"). It is assumed 
here that the Lagrangian of the system can be expressed as 

k 
1 . 2  

L = ~ ~.,  IstPs + L ( t p ,  (p, u, it, tot)  (1.1) 
s = l  

and the non-conservative generalized forces corresponding to the rotational coordinates as 

Q~, = - ks( fp s - ~sn~to) + ~sks(  co~ - nsto)  (1.2) 

where Is, ks and co are positive constants; os = _+1, ns are positive integers, and cos are the so-called 
partial angular velocities of rotation - the angular velocities of the rotations in the case that there are 
no oscillatory motions (u~ = const). 

In the case of the synchronization problem for rotors, the difference between the torque L~((o~) turning 
the sth rotor and the torque of the resistance forces Rs((0~) can be expressed in the form (1.2). It is 
assumed that the equations of motion of the system may be written as 

liSPs + k~( (ps -  ~snsco) = Itd)~, s = 1 . . . . .  k (1.3) 

Eur(L ) = Qur, r = 1 . . . . .  v (1.4) 

d 0 0 is the Euler operator and Qq is the non-conservative generalized force corresponding whereEq - d t  ~0 Oq 

to the coordinate q, 

I t ~  = Osk (co s - n~co) - E~ (L_)  (1.5) 

It > 0 being a small parameter. The functions L_ and Qur may depend both on the generalized coordinates 
and velocities and on the time "c = cot, being 2n-periodic functions of % and "c; the functions L_ and Qur 
may depend on It. The functions are assumed to be sufficiently smooth to guarantee the existence of 
all solutions and expansions considered below. 

The generating equations (It = 0) corresponding to Eqs (1.3) and (1.4) admit of a family of solutions 

0 
cp s = as(nscot  + O~ s) (1.6) 

corresponding to uniform rotations at velocities I<0°1 = nsco and certain arbitrary phases as. 
The synchronization problem is to find conditions for the existence and stability of solutions of Eqs 

(1.3) and (1.4) of the form 

q~s = IJs[nscot + O~s + Itllt(sP)( cot, P-)I, Ur = u(rP)(CO t, I t)  (1.7) 

where ~P)  and u~ p) are  2re-periodic functions of z = cot. A solution of this problem by Poincard-Lyapunov 
small parameter methods is presented, in particular, in [2]. 

2. S O L U T I O N  OF T H E  P R O B L E M  BY D I R E C T  
S E P A R A T I O N  OF M O T I O N S  

To solve the problem by the method of direct separation of motions [3], a solution of the equations is 
sought in the form 

cps = (ys[nscot  + o~,(t) + ~ s ( t ,  tot, g)], U r = Ur(t, COt, It) (2.1) 

where c~(t) are "slow", and gs and ur are "fast" 2re-periodic components (t is the "fast" and z = cot is 
the "slow" time variable, and co is a "large" parameter), and it is assumed that 

(V~( t ,  cot, Ix)) = O, (ur ( t ,  cot, g)) = 0 (2.2) 
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The angular brackets denote the mean with respect to ~ over the period 27t. It is also assumed that 

6~ s ~ nsm (2.3) 

Sys tem (1.3), (1.4) reduces to the following system of integrodifferential equations in the variables 
%, ~ and Ur 

Is6~ s = - k,(~ s + ~tO, (@,) (2.4) 

!sCgs = - k , f g s  + ~.oA,t,s- (O's)) (2.5) 

E, (L) = Q~ (2.6) 

According to the method of separation of motions, in order to obtain the equations of slow motions 
in the first approximation which hold at least in the neighbourhood of steady motions as =cons t ,  it 
suffices to find an approximate asymptotically stable periodic solution of the equations of fast motions 
(2.5) and (2.6) for constant ("frozen") 6c~, c~ and t and to use them in computing the mean on the right 
of Eqs (2.4); we will denote such a solution by gr~j, u* and fl0*, respectively. We then arrive at the following 
equations of slow motions 

I~6~,+k~a~ = t , t ~ ( [ ~ ] , ) ,  s = 1 . . . . .  k (2.7) 

The square brackets with an asterisk mean that the function enclosed in them is evaluated for the solution 
V~*, ur.* Define a function 

A_, = ([L_l,)  (2.8) 

and evaluate its derivative with respect to e~. After some relatively simple reduction, including integration 
by parts, taking equalities (1.4) and (2.1) into account, we find 

3A_, a ( [ L _ ] , )  k. .~. /r~Lqafp~ FaL_-] ~ps*\  ./raL_qaa* raL_-l~U*r\ 

a /5 = 

= - s - - 1 \  = 
(2.9) 
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Finally, since by the representations (2.1) the functions &~ occur in all relations only in the combination 
n~¢o + &~, it follows by (2.3) that the asterisk in equalities (2.9), (2.10) and (2.12) may be omitted. As 
a result, the equations of slow motions (2.4) may be written in the form 

OD 
lsgt s+ks6~ s = OO~s, s = 1 ... . .  k (2.13) 

where 

D - ( A + B ) ,  OB v / OUr\ 
~ s s  = ks ( cos -  n, co) + = ) _ ~ [ Q .  ] ~ 2  (2.14) 

r =  1~ r / 

D is the potential function and B is the so-called potential of mean non-conservative generalized forces, 
corresponding to the oscillatory coordinates (it is assumed that such a potential exists). 

3. E X T E N D E D  F O R M U L A T I O N  OF T H E  I N T E G R A L  C R I T E R I O N  

Under  the assumptions adopted above, Eq. (2.13) immediately implies (see, e.g. [10]) the validity of a 
generalized formulation of the integral criterion (the extremum property) for synchronous motions of 
objects with almost uniform rotations (in the synchronization problem one considers asymptotic stability 
in the small, and in self-synchronization problems - asymptotic orbital stability [1-3]). Stable synchronous 
motions correspond to values of the phase % = const, which determine strict coarse minima of the 
potential function D = O(Otl, . . . ,  ~k) (in the self-synchronization problem: D = D(~I - ~k, . . . ,  ak-1 - ~k) 
and one considers minima of this function as a function of the phase differences % - ak); unlike the 
previous formulation, the function D may be evaluated not necessarily in the generating approxima- 
tion (g = 0) but to within any approximation with respect to g, with two reservations: 

(1) it is assumed in addition that % varies slowly compared with ~t s and that &s is small compared 
with nsco, that is, (ks ~ ~s and &s ~ nsco 

(2) expressions (2.10) and (2.11) must be small to a higher order than the terms included in the 
evaluation of the functions A and B. 

The more accurate evaluation of the function D makes it possible to establish the existence of strict 
minima in those ("non-simple") cases in which this function, in principle, has no such minima in the 
generating approximation. 

As before (see [1-3]), the expression for D may be simplified considerably under certain additional 
assumptions. 

1. If the partial velocities cos are appropriate multiples of the synchronous velocity co, that is, 
¢0s = nsco, and the non-conservative forces Q,r are negligibly small, then 

o = -A = -<ILl)  (3.1) 

that is, the potential function is the Lagrangian of the system averaged over a period, evaluated for the 
function (1.7). 

2. Suppose the system is linear in the oscillatory coordinates and the function L can be written as 

L = L* + L 0) + L (u) (3.2) 
with 

k v k 

L* = E Ls((Ps' q)s) + E f r(fPl . . . . .  (Pk, q)l . . . . .  q)k)tir + E Fs(q)s) (3.3) 
s = l  r = l  s = l  

v v 

L(~) 1 = ~ Y~ Y~ (arfliritj-- brjUrUj), L(II) = W(@I . . . . .  ~0~, q01 . . . . .  q)k) (3.4) 
r = l j = l  

where %- and b,j are constants, and L~, fr, Fs and T are functions of the variables indicated; moreover, 
L~, fr and Fs are periodic in % with period 2n. Suppose in addition that the generalized forces Qu~ are 
either absent or negligibly small. 

Then the following relations hold 

~A ~(A (H) - A 0)) 
- v o ( g )  

0% 0% (3.5) 

(A(I)= ([L(1)]), A ( I I ) =  ( [ L ( I I ) ] ) )  
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These relations differ from those which hold for the generating solution (see [3, Chap. 3, Eq. (2.20)]) 
in that they hold to within terms of the order of g; this is easily established by calculations analogous 
to those presented in [3]. 

As a result, in this case, on the assumption that terms of the order of g may be neglected in (3.5), 
we can take 

D = A (l)- A (II) (3.6) 

and, in the case when A (II) = 0, put 

D = A/l) (3.7) 

In this case, therefore, the potential function is the Lagrangian of only the oscillatory part of the system, 
averaged over a period. 

Incidentally, the same result may be obtained using the Hamilton variational principle, modifying 
and extending Lur'ye's work in [11]. 

4. E X A M P L E S  C O M P A R E D  W I T H  R E S U L T S  O B T A I N E D  
BY C L A S S I C A L  M E T H O D S  

4.1. Double synchronization o f  two vibrodrivers on a vibrating platform (a supporting body) with one degree 
o f f r eedom (Fig. 1) 
Two unbalanced vibrodrivers mounted on a supporting body are set in rotation by electric induction 
motors. The supporting body can move relative to a stationary base in a certain fixed direction Ou and 
is connected to the base by linear elastic elements. The equations of motion (1.3) and (1.4) for this 
problem may be written as follows [2]: 

lsCP s + ks((Ps - ~sns~O) = g[Ls(6snsO~) - R(n,m)] + mses(//sincps + gcos~ps)], 

s = 1, 2; n 1 = 1, n 2 = 2 (4.1) 

2 
. . . 2  

Mii + cuu = E mjej(ipjsmq~j + ~pj cosq0)) (4.2) 
j = l  

where ms is the mass of the rotor of the sth vibrodriver, es is its eccentricity, Is is its moment of inertia 
about the axis of rotation, ks > 0 are constant coefficients characterizing the damping, M is the mass 
of the supporting body, allowing for the mass of the vibrodrivers, Cu is the stiffness of the elastic elements, 
and g is the acceleration due to gravity. 

When the problem is solved by direct separation of the motions, Eqs (4.1) and (4.2) are replaced, 
via representations (2.1), by the equations of the slow and fast motions (2.4) and (2.5), where 

~s  = Ls(ns°~) - Rs(nsC°) + mses[iisin(ns °~t + o~s + Us) + gcos(ns° l t  + C~s + Us)] 

Equation (2.6), in turn, becomes 

2 
• 2 Mu'+CuU = Z mj£j[(pjsin(njOIt+O~j+lllj)+(njO)+lgj) cos(njOOt+O~j+lgj)] (4.3) 

j - - I  
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The periodic solutions of the equations of fast motions (2.5) are expanded in series in powers of IX. 
Note that in the case under consideration - multiple synchronization - it is no longer sufficient to take 
% = 0 in the first approximation. At the same time, as will be shown below, it will suffice to evaluate 
~gs to within terms of at most the first order. On that assumption we find (p2 = cu/M) 

( SmsSs EO ) 2 msGg 
~tllls = 8MIs[(SO))2 _ p2] sin2(so)t + as)  (so))21s cos(so)t + (Xs) + 

2 
mlElm2E2 o) +~(-1)s(31-15S)M~:p2][ l + O~ 1 + ot 2) + (-1)Ssin(cot + ot 2 - txi) ] ~sin(3olt 

s = l , 2  

Then the solution of Eq. (4.3) takes the form 

2 

U - M(O) 2mlE10p2) cos (t.Ot + '~1) - _  

4raZE2(02 ~ 2 2 2 (4.4) gm181go)  
cos(2Eot + ct2) sin2(o)t + ct 1) 

M(40)2 _ p2) M I  10)2(4(0 2 _ p2) 

where we have written out only those terms that affect the computation of the mean Lagrangian to 
within the approximation considered. 

Substituting expression (4.4) into the expressions for the kinetic and potential energy of the oscillatory 
part of the system 

T ( l )  1 2 r i ( i )  1 2 = ~ M a ,  = ~c.u 

and averaging them over one period, we obtain the potential function for the case in question 

2 2  2 
mi El m2E2gO) 

D = A( l )=  ([L0)]) = ([TO)-HO)]) = 2 2 sin(2(xl-°~2) 
M I I ( 4 ( o  - p ) 

As a result, the equations of slow motion, which also describe the motion in the neighbourhood of 
steady synchronous motions c~ s = const, may be represented in the form (2.13). 

The expression obtained for the function D yields expressions for the vibrational moments 

OA(1 ) 2 2 2 4(5 - 3 s ) m !  ~.i m2¢2go,) 
Ws = 30~s - MI1(4O32_ p2) c°s(2t21 - -  ~2)' S = 1, 2 (4.5) 

These expressions are exactly the same as those obtained by a more complicated procedure using 
Poincar6's method [4]. Consequently, all the other results are identical as well. 

4.2. D o u b l e  synchroniza t ion  o f  three unba lanced  vibrodrivers m o u n t e d  symmetr ical ly  on a softly vibration- 
insulated plane-osci l la t ing rigid body  (Fig. 2) 
The equations of motion of the system are 

ls(Ps + ks( fp s - OsnsO) ) = ~t[ Ls(OsnsO)) - Rs(nsO) ) + 

+ rnsG(£sin(p~ + ycoS(Ps- rs~COS(Ps + gcos(ps)], s = 1, 2, 3 

3 
M£ ~ . . . .  2 = mjEj(~pjsln~pj + cpj cos~Oj) 

j = l  
3 

M y  ~., "" .2 . = mjej(fpjCOSCpj -- ~pj Slrl~j) 
j = l  

3 
I~ ' ~  . 2  . .. = mjE j r j ( (p j  sln(pj - (Djcos(Dj) 

j = l  
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where I is the moment  of inertia of the supporting body and r s is the distance from the axis of the sth 
vibrodriver to the centre of gravity of the supporting body. The outer vibrodrivers are identical and 
their axes are equidistant from the centre of gravity, that is, mlea = m383, I1 = 13, rl = r3 = r, r2 = 0. 
All the vibrodrivers rotate in the same direction, the frequency of the central vibrodriver being twice 
that of the outer ones: nl = n3 = l, n 2 = 2. 

Applying the method of direct separation of motions via the representations (2.1), one readily arrives 
at the equations of the slow and fast motion (2.4)-(2.6), where, in this case, 

• s = L~(nsto) - Rs(nsto  ) + msG[±'s inZs + 5?~sCOSZs + 

+ ycOSZs -Y~ssinZs + rs~cOSZs- rsfP~tssinz  ~ + gcOSZs - g ~ s s i n Z s ] ,  Zs = nstot + as 

First expanding the periodic solutions of the equations of fast motion (2.4) (in the same approximation 
as in the previous example), we find 

4 m l e l m 2 E 2 s i n ( t o t  + a 2 - as)  - ~ c o s ( m t  + as) + 
PUs - M I  1 l l to 

(m|Eir) 2 . . . .  

+ 811 l S l n Z ( t o t + a s ) - S i n ( 2 t o t + a l + o t 3 ) ] ,  s = 1,3 

~t~t 2 - mlglm2£2[ sin(tot + a 2 - % )  + sin (tot + a 2 - a 3 )  ] -- m2g2g Cos (2tot + a2) 
MI2 412to  2 

Then Eqs (2.6) become 

2 
m l E l t o  

J( = -----M---[cos(tot + a l) + cos(tot + a3)] 

2 2 
2 m l e l g  . . . . .  

+ ~---q77---'tslnzttot + a 0  + sin2(mt + a3)] 
lvl1 1 

4m2£2to  2 
M cos(2tot + a2) + 

2 
mls~to 4m2e2toz sin( 2tot + R2) + Y - M [ sin(tot + a I) + sin(tot + a 3 )  ] M (4.6) 

2 2 
2m~e~g 

+ ----M-~I [cos2(tot + a l )  + cos2({ot + a3)] 

2 
mlElrm 

~b = I [sin(rot + a t )  - sin(tot + a3)] 
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where we have written out only those terms that affect the computat ion of the Lagrangian to within 
the approximation considered. 

In view of the assumption concerning the softness of  the elastic supports, the mean value of the 
Lagrangian is simply the mean kinetic energy of the supporting body 

D = A (1)= ([T(1)]) = ~([M(.~2+ ~2)+I~021) = 

22  2 2 2 2  2 22  
( ~.~_1 mlElr  0 } '  2mlElm2E2g • 

_ m I 60 ~ -  ) c ° s ( a l - c z 3 ) +  ~ [ s l n (2°q -Ot2 )+s in (2Ot3 -a2 ) ]  

Finally, taking the equations for the slow components  (mean phases of rotation of the rotors ~s) into 
consideration, we obtain the system 

Is& s + ks6t s = Ls(O ) - Rs(m ) + 

2 2 2 
,mlel m ( ,  Mr2~ . . 

+ (2 - s)------M-~., - - ~ - ) s ' n l . ° h - ~ 3 ) -  I , M  

I2&2 + k2& s = L2(2m) - R2(20 ) + 

2 2 
+ 2 m l ~ q m 2 e 2 g [ c ° s ( 2 ~ l  - ~2) + cos(2°t3 -°t2)]  

I~M 

2 2 
4m~ glm2£2g 

cos(20ts -~2) ,  s = 1,3 

(4.7) 

Equations (4.7) of the slow processes leading to steady synchronous motion are exactly the same as 
those obtained by the more complicated method (using the method of direct separation of motions 
[5]). Hence  all the other results are also the same. It  should be emphasized that in the double 
synchronization problems considered here, it proved sufficient to solve Eqs (2.5) to within terms of the 
order of g. Equations (2.6) are solved in the same way as in the "sample" case, but taking into account 
the greater  accuracy in the solution of Eqs (2.5). 

This research was supported financially by the Russian Foundation for Basic Research (03-01-00621) 
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